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According to Begon et al. (2006), a niche is not a place
but an idea. A niche is a summary of an animal’s toler-
ances and requirements. This determines where an
animal would do best and where it likes to be; in other
words, how an animal would select its habitat. Habitat
selection is usually represented graphically in terms of
prey selection, food intake rates and predator avoidance
(Piersma 2011), but when this is done for particular ani-
mal species, their morphological, physiological, behavio-
ural and sensory design features are mostly taken for
granted (e.g. Wiens 1989, Morrison et al. 1990, Goss-
Custard et al. 2006).

How helpful even a limited understanding of, in this
case, prey detection mechanisms could be for predictive
models of habitat selection and foraging distributions
became clear early on in our work on Red Knots Calidris
canutus. The precise arrangement of pressure sensors in
the bill tip and their wiring to and in the brain explained
the considerable capacity of Red Knots to detect hard
objects such as bivalves and snails in wet soft sediments
(Piersma et al. 1998). However, these sensory insights
then also helped us to understand the rather low giving-
up densities of available prey at some sites (Piersma et al.
1993), the near-absence of soft-bodied prey such as poly-
chaete worms in their diets (Piersma 1991), and the for-
aging distributions of Red Knots over intertidal mudflats
at a variety of spatial and temporal scales (Piersma et al.
1995, van Gils et al. 2006b, Quaintenne et al. 2011).
Thus, if a little understanding of even a single ‘design’
feature helped so much to make sense of this species’
ecology, imagine what an understanding of multiple
design features would do (van Gils et al. 2006a).

This takes me back to a symposium that I once
attended at Leiden University. I was there to tell the
story of the specialized bill-tip organ of Red Knots and
how this helped us understand their food and habitat
choices. The audience consisted of functional morpholo-
gists in the tradition of Leiden’s van der Klaauw (1948)
and see, for example, Gerritsen & Sevenster 1985,
Zweers et al. 1995, van der Leeuw et al. 2003). Apart
from the widespread whisperings during the conference
dinner about functional morphology rapidly becoming a
dying trade, the composition of the nationalities around
the table struck me as odd. Whereas the behavioural,
ecological and ornithological meetings that I was used to
were usually dominated by scientists from English-speak-
ing countries, none of those were there; the audience
was German, Dutch, Austrian and French only. Here
were the scientists who could tell one bone, one set of
muscles or one sensory organ from another and know
how to study their morphology and functionality, and
there we were, apparently losing these remarkable, if
somewhat inward-looking, specialists.

Still, as witnessed by a steady trickle of new bird-
related publications (e.g. Guillemain et al. 2002, Cunn-
ingham et al. 2010a, 2010b, Demery et al. 2011), the
trade that merges insights from morphology, sensory
physiology and ecology is alive and well. In this issue of
Ibis, Martin and Portugal (2011) describe the visual fields
of four ecologically distinct but phylogenetically related
wading birds from one family, two ibises and two spoon-
bills, and interpret their findings in the context of the
foraging ecology of these threskiornithids. They were in
for a surprise when finding that even such tactile foragers
with long bills have fields of vision that enables them to
look binocularly at freshly captured prey. Clearly, careful
scrutiny of captured prey, during handling between the
tips of their mandibles before ingestion, is important
enough for these spoonbills and ibises to give up the
possibility of complete celestial coverage by having
highly placed eyes. The ingestion of Three-spined Stick-
lebacks Gasterosteus aculeatus in full self-defence must
be something like eating barbed wire. It involves the dis-
armament of the spines by careful head-up positioning
of the fish before swallowing, and I can see why spoon-
bills need to use binocular visual input to do this effi-
ciently. That spoonbills and ibises are large bodied, and
thus have less to fear from avian predators than have
smaller tactile-feeders such as ducks, may explain why
the large wading birds have given up complete celestial
vision, whereas the ducks have not (Martin 1986b, 2007,
Guillemain et al. 2002, Martin et al. 2007a).

Such trade-offs are paramount in the designs of all
animals, and it is tribute to Graham Martin that he has
built up such an extraordinary portfolio of comparative
studies at the interface between morphology, sensory
physiology and ecology (e.g. Martin 1994, 2009, 2011,
Martin & Katzir 1995, Martin & Coetzee 2004, Martin*Email: theunis.piersma@nioz.nl
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et al. 2007b, 2008). Starting off with studies explaining
aspects of the ecology of owls with reference to their
capacity to see in the dark (Martin 1984, 1986a, 1990),
he went on to examine a wide variety of birds using his
self-constructed avian ophthalmoscope (Martin 2007).
Time and again Martin and his associates have found
that, beyond the grand design features of clades of birds,
the details of the perceptual systems reflect the finer
details of birds’ ecologies rather than shared ancestry.
More often than not, studies of fields of vision hint at
key ecological features that ecologists had failed to
notice. For example, Eurasian Golden Plovers Pluvialis
apricaria are known as night foragers (Gillings et al.
2005, Gillings & Sutherland 2007), and indeed they have
very large eyes (and probably sharp ears as well, Lange
1968) to help them locate earthworms (Lumbricidae)
close to and on the surface of arable fields and mead-
ows. In fact, the eyes are so big that this has necessi-
tated special supraorbital bones to better anchor the
eyes in the eye-sockets (Martin & Piersma 2009). How-
ever, the presence of this extra bone, the eye-brow of
plovers, then leads to a wide blind area above the head:
the plovers cannot detect dangers coming from above
and behind. This realization suddenly explained why
European Golden Plovers are often so immensely cryp-
tic in their behaviour. They are true masters of disap-
pearance even in daytime and even in open landscapes.
They do this by sitting tight on the ground (this would
make them hard to locate and unavailable for Peregrines
Falco peregrinus which do not capture prey on the
ground), or by circling in flocks high in the air on warm
days with thermals (again taking them out of the reach
of raptors).

A remarkable avian radiation is that of the sandpip-
ers, the Calidrinae (family Scolopacidae), ranging in size
from the puny 20-g Least Sandpiper Calidris minutilla
to the relatively mighty 200-g Great Knot Calidris tenui-
rostris (Piersma et al. 1996). Within this subfamily, the
Great Knot (together with the much shorter-billed and
rocky shore-foraging Surfbird Aphriza virgata) belongs
to the sister clade of Red Knots (A.J. Baker unpubl.
data). When one watches Great and Red Knots foraging
together in mixed flocks on mudflats in northwest Aus-
tralia, doing the same sort of things and taking the same
sorts of prey, one would assume that they share the
same sensory tools. But closer examination shows that
they do not. With respect to the bill-tip organ that
makes Red Knots so special (Piersma et al. 1998), with
far fewer and not-forwardly-directed sensory pits in the
tips of the upper and lower mandible, Great Knots and
Surfbirds are actually very similar, and quite distinct
from Red Knots (H. Berkhoudt & T. Piersma unpubl.
data). This tallies with behavioural observations on cap-
tive Great Knots, which do not appear to have the urge
to spend 10–20% of the day probing soft sediments to
locate prey that are never there, as is the wont of cap-

tive Red Knots (T. Piersma unpubl. data). I am quite
convinced that neither Great Knots nor Surfbirds pos-
sess the remote prey detection system of Red Knots.
However, they may not be as ‘blind’ to vibrations made
by burrowing worms and shrimp as Red Knots are, a
sensory modality that appears to be the specialization of
Sanderling Calidris alba (Gerritsen & Meijboom 1986).

Then there exists the fantastic morphological spoon-
bill-like bill specialization of the critically endangered
Spoon-billed Sandpiper Calidris ⁄ Eurynorhynchus pygm-
eus (Piersma 1986, Taldenkov & Gerasimov 2006), but
by and large sandpiper bills are rather uniform in shape
and size. I suggest that the evolutionary radiation of
sandpipers to large extent is a radiation of the bill-tip
organ. Comparative studies of that organ, in combina-
tion with other sensory modalities such as taste (Gerrit-
sen et al. 1983) and vision, as explored by Martin and
Portugal in this issue of Ibis, could generate considerable
and unexpected insights into the ecology and distribu-
tion of this group of birds. In fact, I believe that future
studies in avian biology that deal with daily activity
rhythms, foraging distributions, habitat selection and
indeed the niche will always profit from taking the per-
ceptual characteristics of the focal species seriously into
account.
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